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LETTER TO THE EDITOR 

Combined variable-phase supersymmetric quantum 
mechanics 

P K Bera, T K Nandi and B Talukdar 
Department of Physics, Visva-Bharati University, Santiniketan-731 235, India 

Received 21 July 1983 

Abstract. Methods of supersymmetric quantum mechanics (SUSYQM) are used to derive 
relations between phase functions which occur in the mntext of the variable-phase 
approach to potential scattering. It is shown that the phase-equivalent potentials obtained 
by the application of SUSYQM are not off-shell equivalent. A case stndy is presented in 
support of this. 

In the recent past, a large number of papers appeared to combine supersymmetric 
quantum mechanics (SUSYQM) with the methods of formal scattering theory. The 
results presented are either new or older ones given a new interpretation. On a very 
general ground, one knows that SUSYQM is characterized by the existence of partner 
Hamiltonianslpotentials which have identical spectra except for the missing ground 
state. In a remarkable paper Sukumar [I] showed that partner potentials obtained by 
a single SUSY transformation are phase inequivalent. However, the associated phase 
shifts are simply related. Interestingly, this phase-shift relationship becomes exact for 
the Coulomb problem. Further by making use of two successive SUSY transformations 
he could both eliminate bound-states and preserve the phase shift. This seminal 
observation has been exploited by Cooper et a1 [2], by Baye 131, by Amado et a1 [4] 
and by Fiedeldey et d[5] to study the physical processes of their personal interest. 

The object of the present letter is to examine the role of SUSY transformations in 
the phase approach to potential scattering [6] .  The phase approach often goes by the 
name variable-phase approach (VPA) or phase-function method (PFM). The phase 
approach is primarily a method for computing scattering phase shifts, and serves as a 
useful alternative to the SchriSdinger wavefunction method. The PFM starts by 
assuming that the phase function d(k, r) is the solution of the Cauchy problem 

d'(k,r)= -k-'u(r)sin*(kr+d(k,r) (1) 
with 

d(k, 0) =o. 

d(k)=limd(k, r). 
The scattering phase is then 

-a 
(3) 

We have written (1) for the s-wave scattering on a potential u(r)  at an energy E=f  
k220 omitting the subscript 1 = O  on the phase function and phase shift. For the lth 

0305-4470/93/201073+05 $07.50 0 1993 IOP Publishing Ltd L1073 



L1074 letter to the Editor 

partial wave, however, we shall use d,(k, r) and 6,(k).  Here we have chosen to work 
with units in which h = m = 1. 

A number of generalizations of the phase approach have been considered by 
Calogero [6]. We propose to work with one of these and derive a combined variable- 
phase supersymmetric quantum mechanics (VPSSQM). In particular, we are interested 
in studying (i) the phase-function relationship for SUSY partners, and (ii) that for 
phase-equivalent potentials. As an added realism we demonstrate that the constructed 
phase-equivalent potentials are not off-shell equivalent. 

The s-wave equation in (1) has been derived by taking sin kr and cos kr as 
comparison functions with respect to which the scattering phase shift is measured. 
Traditionally, for 1-wave scattering, the comparison functions are taken as Y,(kr) and 
fj,(kr), the Riccati Bessel and Neumann functions. In contrast to this, Calogero 161 
treated the centrifugal barrier as a part of the potential and wrote a generalized phase 
equation 

Z(l+l) 
,S;(k, r)= -k-' [T+ U(r) ]  sin*(kr+B,(k, r ) )  (4) 

where ,S,(k, 0) = 0 and the scattering phase-shift 6,(k)  is given by 

6,(k)=,SI(k, a )+lz /2 .  (5) 
The significance of (4) and (5) is that the phase equation yields the phase shift due to 
both the centrifugal and external potential, and the scattering phase shift is obtained 
by subtracting the centrifugal part, l d 2 ,  from the total phase shift &(k,  a). The 
solution of (4) is subject to the additional requirement that ,S;(k, 0)= - kN(Z+ 1). 
When the phase equation is written in the form of (4), the regular solution yl(k,  r )  of 
the associated Schrodinger equation and its derivative y;(k,  r)  follow the ansatz and 
constraint 

yl(k,r)=al(k,r)sin(kr+Bl(k,r))  (6) 

VU, r)=ka,(k,  r )  cos(kr+Bl(k, r))  (7) 

and 

where the amplitude-function a,(,%, r) is related to the Jost function 171 for a potential 
truncated at r and is a measure of focusing or defocusing of the projectile wavefunc- 
tion by the potential field [SI. 

Let y , ( k , r )  in (6) be the eigenfunction for a Hamiltonian H with potential u(r). 
Then the eigenfunction for its supersymmetric partner A with potential b(r) can be 
obtained from [l] 

$,+,(k, r) = ( E -  E(o)""zA -+,(k, r )  (8) 
where E(') is the ground-state energy of H written as E(4 = - y@)'/2. The operator A - 
is given by 

Here the 'superpotential' W(r) is of the form 
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with *io) (E('), r), the ground-state wavefunction of H. From (6), (7). (8) and (9) we 
obtain 

$!+,(E, r)= (2(E-E(o)))-1'za,(k, r) sin(kr+fi/(k, r) - d 2 +  tan-'[W(r)/k]). 

Further, $,+](E, r) can be written in the form 
(11) 

r)=&Ll(k, r)sin(kr+h+,(k, r)) .  (12) 
From (11) and (12) we have 

@,+](k, r) =(2(E-E(O'))-"'a,(k, r) 

D,,(k, r)=j?,(k, r)-n/2+ tan-'[W(r)/k]. 
and 

We note that (13) is equivalent to (15) of Sukumar [l]. However, our equation of 
interest is the phase-function relation in (14). As a useful check on (14) we see that as 
r-a. it gives the required phase-shift relationship [I]. 

To derive the phase-function relationship for phaseequivalent potentials we solve 
the partner Hamiltonian €? at the ground-state energy E") of H, i.e. ' 

A~l(E(o),r)=E'o'y,(E'o', r). (15) 
The wavefunction $,(E@), r) is not square integrable, but can be chosen regular at the 
origin. Such a regular solution of (15) is [9] 

where 

(17) 

The eigenfunction for the supersymmetric partner of #, i.e. of €? with potential ii(r) is 
obtained from 

where the operator 

From (6) ,  (7), (18) and (19) we obtain 

;,(E, r)= ( 2 ( ~ -  ~(')))- 'a,(k, r )  sin(kr+fi,(k, r) 

+ tan-'(W(r)/k)-tan-'(W(r)/k- k-'-InI(E'"),  r ) ) ) .  
d 
dr 

Further, &(E, r) can be written in the form 
$,(E, r ) = ~ , ( k , r ) s i n ( k r + ~ , ( k , r ) ) .  
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From (20) and (21) we have 
dkk,  r)  = (2(E- E(@)))-'a,(k, r) 

and 
i , ( k ,  r )=&(k,  r)+tan-'(W(r)/k) 

d 
-tan-'(W(r)/k- k-l- ln dr  [(E(@', r ) ) .  (23) 

From (23) it  is clear that j , ( k , a )  and ,!3,(k,a) are equ-al. This implies that the 
potentials u(r)  and E(r) are phase-equivalent. For finite r,&k, r) andP,(k, r)  are not 
equal. Consequently, these potentials are wavefunction off-shell inequivalent and this 
results from formal eliminatiodaddition of bound-states due to supersymmetric 
transformations. Note that bound states of a potential correspod to the simple poles of 
the off-shell two-body f matrix. Case studies based on (14) and (23) are in order and in 
the following we deal with this. 

Our potential of interest is the three-parameter (D, r l ,  d) Morse potential 

u(~)=Dexp(2 ( r - r , ) /d ) -ZDexp( ( r - r , ) /d )  (24) 
for which we recently constructed an analytical expression for the phase equivalent 
partner [9].  For the potential in (24) we have found 

z 
B,(k, r)  =#lo(k, r)  - - + tan-' exp((r- rl ) /d)]  (25) 2 

with a l = d  V% for the phase function relationship of u(r) and 6(r) .  As r+a, (25) 
gives our result [9] for the scattering phase shift. The phase function relationship for 
u(r) and $(r) have been obtained in the form 

1 a'-9 a ,  
&k, r)=&(k,  r ) +  tan-l -- + - exp((r- r , ) /d)  [ kd kd 

The expression for Z(r )  is given in our previous work [SI. Since the results in (25) and 
(26) refer to s-wave scattering, the B s  are simply related to as, the phase functions/ 
phase shifts. 

In figure 1, we plot the phase functions for u(r) ,  O(r) and 5(r) as a function of r at 
the centre-of-mass energy E,= 1OOMeV and label them by 6.8 and 8 ,  respectively. 
Here we have chosen to work with the potential in (24) parametrized for the nucleon- 
nucleon interaction in the 'sl-states [lo]. The phase function has at each point the 
meaning of the phase shift of the wavefunction for scattering by the potential at that 
point. The asymptotic vanishing of the potential implies that the phase function 
becomes asymptotically constant and this asymptotic vaiue is just the scattering phase 
shift. Looking closely into our figure we see that both phase function and phase shift 
for u(r) and O(r) are widely different, whereas, u(r) and b(r)  are only off-shell 
inequivalent and the phase-equivalence is clearly displayed by the asymptotic values 
of 6 and 6. We feel that construction of on- and off-shell equivalent potentials by the 
method of SUSY quantum mechanics constitutes a problem of considerable interest. 
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Figure 1. Phpe function 6(k, r )  as a function of r at E,= 100 MeV,The curves labelled 
by 6, 6 and 6 denote variation of phases induced by v( r ) ,  G(r) and 6(r) ,  respectively. 
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